

Rotary table cylinder——HRQ Series

Product series

Installation and application

- $1.\, Dirty \, substances \, in \, the \, pipe \, must \, be \, eliminated \, before \, cylinder \, is \, connected \, with \, pipeline \, to \, connected \, connected \, with \, pipeline \, to \, connected \, wi$ prevent the entrance of impurities into the cylinder.
- 2. The medium used by cylinder shall be filtered to 40 μ m or below.
- 3. Anti-freezing measure shall be adopted under low temperature environment to prevent moisture
- 4. If the cylinder is dismantled and stored for a long time, pay attention to conduct anti-rust treatment to the surface. Anti-dust caps shall be added in air inlet and outlet ports.

Airtac

HRQ Series

Symbol

Product feature

- 1. Rack and pinion design, stable functioning.
- 2. Double cylinder structure, double output could be achieved.
- 3. The manufacturing precision of working platform is high, and is easy for installation, and is of precise orientation.
- 4. The center of working platform has a through hole, and pipe can be located and passed through this hole;
- $5. \ Two \ sides \ of \ cylinder \ have \ orientation \ holes, \ to \ facilitate \ installation.$
- 6. Two modes of buffer could be chosen, adjustment bolt buffer and internal shock absorber, the maximum buffer energy of internal shock absorber is 3-5 times that of adjustment bolt buffer.

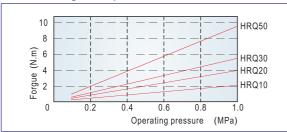
Ordering code

HRQ

Model can to be changed Ordering code. Example:

Production type: HRQ

Specification: 50


Buffer type: Internal shock absorber

Thread type: NPT

Model:HRQ50-A-T

Actual forgue output

Specification

Specification	n	10	20	30	50		
Acting type		Double rack and pinion(Double acting)					
Fluid		F	Air(to be filtered by 4	40 μ m filter elemer	nt)		
Operating	With adjustment bolt		0.1~1.0MPa(15~1	45psi)(1.0~10.0bar	^)		
pressure	With internal shock absorber		0.1~0.6MPa(15~87psi)(1.0~6.0bar)				
Proof press	ure		1.5MPa(218	psi)(15.0bar)			
Temperature	e °C		0~	-60			
Angle adjus	tment range		0~1	90°			
Repeatable	With adjustment bolt	0.2°					
precision	With internal shock absorber	0.05°					
Theoretic m	oment (Nm)(0.5MPa)	1.1	2.2	2.75	5.15		
Cushion	With adjustment bolt	Rubber bumper					
type	With internal shock absorber	Shock absorber					
Б	End ports	145		1/8"	1		
Port size	Side ports	M5 × 0.8		M5 :	× 0.8		
Weight g		535	940	1260	2060		

1 PT thread, NPT and G thread are available.

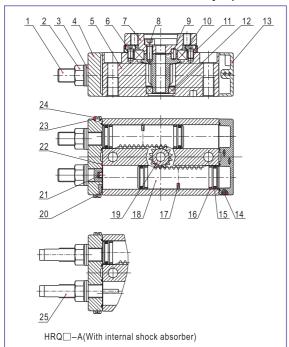
Add) QCK series are all attached with magnet, please refer to Page 403~426 for the specific content of sensor switch.

Maximum allowed movement energy and rotation times

Model	Maximal al	lowed energy (J)	Rotation times (s/90°)		
Model	With adjustment bolt	With internal shock absorber	With adjustment bolt	With internal shock absorber	
HRQ10	0.01	0.04	0.2~1.0	0.2~0.7	
HRQ20	0.025	0.12	0.2~1.0	0.2~0.7	
HRQ30	0.05	0.12	0.2~1.0	0.2~0.7	
HRQ50	0.08	0.30	0.2~1.0	0.2~0.7	

Note) ①: The movement energy should not exceed the allowed maximum energy, or the inner accessories of product would be damaged;
②: When the rotation times of with shock absorber is larger than the allowed tolerance, the bigger effect will be lost.

Explain of model


Note ①: When it is 10,20 specification, thread type is M5, it is blank here. Add) HRQ series are all atteched with magnet.

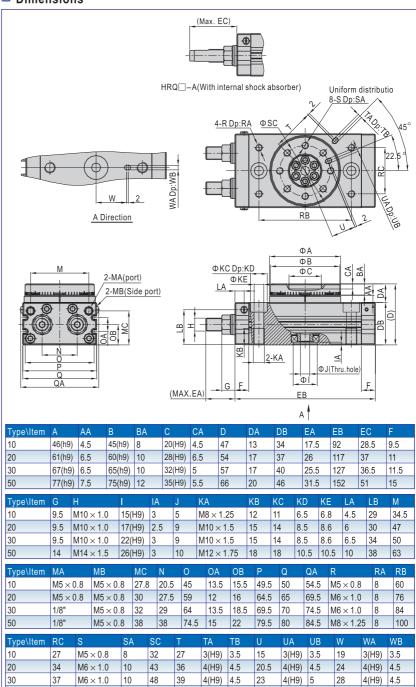
Maximum allowed loading

	Loading type	Model			
	Loading type	HRQ10	HRQ20	HRQ30	HRQ50
	Maximal allowed radial loading (N)	80	150	200	300
*	Maximal allowed axial loading (N)	80	150	200	300
	Maximal allowed bending moment (Nm)	2.5	4.0	5.5	10.0

HRQ Series

Inner structure and material of major parts

NO.	Item	Material
1	Adjustment bole	Carbon steel
2	Hxcagon nut	Carbon steel
3	Seal washer	Carbon steel & Rubber
4	Front cover	Aluminum alloy
5	Body	Aluminum alloy
6	Hexagon socket head set bole	Carbon steel
7	Table	Aluminum alloy
8	Hexagon socket head set bole	Stainless steel
9	Parallel pin	Carbon steel
10	Deep-groove bearing	Subassembly
11	Bearing retainer	Aluminum alloy
12	Deep-groove bearing	Subassembly
13	Bacl cover	Aluminum alloy
14	Steel ball	Stainless steel
15	Piston seal	NBR
16	Wear ring	Wear resistant material
17	Magnet	Rare earths
18	Rack	Stainless steel
19	Pinion	Chrome molybdenum steel
20	O-ring	NBR
21	Bumper	NBR
22	O-ring	NBR
23	O-ring	NBR
24	Hexagon screw	Stainless steel
25	Shock absorber	Subassembly


Dimensions

50

M8 × 1.25 12

55

45

23

26.5 5(H9) 6

5(H9) 5.5

28

5(H9) 5.5

HRQ Series

How to select product

- 1. Determine the following working conditions according to the actual situation:
- 1.1) Rotation angle θ : The actual rotation angle must be within the maximum allowed range of rotation angle of cylinder.
- 1.2) Rotation time t: The rotation time must be within the maximum allowed range of rotation time of cylinder.
- 1.3) Installation position of cylinder: Allow enough installation space, so as to ensure leaving adequate space for rotation of cylinder and workpieces.
- 1.4) Determination of loading mass and loading shape.
- $\begin{tabular}{ll} 2. \ Calculation of necessary forgue needed when loading \\ rotation (T(N.m): \\ \end{tabular}$

Calculate the necessary moment required for loading rotation according to the formula below, and combine with the forgue diagram of actual effect, to choose pneumatic cylinder with suitable forgue output.

	T:Necessary forgue required for loading rotation (N.m)
T K l	K:Coefficient of allowance, K is defined as 5
$T=K\times I\times \omega$	I:Moment of inertia (kg.m²)
$\dot{\omega} = \frac{2 \theta}{L^2}$	ம்:Angular acceleration (rad/s²)
t²	θ :Rotation Angle (rad)
	t:Rotation time (s)

2.1、Calculation method of moment of inertia in different conditions

DISK	d:Diameter (m) m:Mass (kg)	$I = \frac{md^2}{8}$	$\frac{d^2}{8}$		
	m.mass (kg)	Note: no special installation direction			
Classified disk	d ₁ :Diameter(m) d ₂ :Diameter(m) m ₁ :d ₁ Mass(kg) m ₂ :d ₂ Mass(kg)	$I = \frac{m_1 d_1^2 + m_2 d_2^2}{8}$ Note: compare d_1 with d_2 , dis is extremely tiny	$\frac{d_1^2 + d_2^2}{8}$ sregard d ₁ if d ₁		
Disk	d:Diameter (m) m:Mass (kg)	$I = \frac{md^2}{16}$	d² 16		
		Note: no special installation	direction		
Sphere	r:Radius(m) m:Mass(kg)	$I = \frac{2mr^2}{5}$	2r ² 5		
		Note: no special installation	direction		
Thin-stick a ₁ a ₂	a ₁ :Length of stick(m) a ₂ :Length of	$I = \frac{m_1 a_1^2 + m_2 a_2^2}{3}$	$\frac{a_1^2 + a_2^2}{3}$		
Thin-stick a a a a a a a a a a a a a a a a a a a	stick(m) a ₂ :Length of stick(m) m ₁ :a ₁ Mass(kg) m ₂ :a ₂ Mass(kg)	·	$\frac{a_1^2 + a_2^2}{3}$		
Thin-stick a, a, b,	stick(m) a ₂ :Length of stick(m) m ₁ :a ₁ Mass(kg) m ₂ :a ₂ Mass(kg) a ₁ :Sheet length (m) a ₂ :Sheet length (m)	$I = \frac{m_1 a_1^2 + m_2 a_2^2}{3}$ Note: 1. horizontal installation. 2. pay attention to the chang time when vertical installation. $I = \frac{m_1 (4 a_1^2 + b^2) + m_2 (4 a_2^2 + b^2)}{12}$	$\frac{a_1^2 + a_2^2}{3}$ ge of movement elation.		
Rectangle sheet	stick(m) a ₂ :Length of stick(m) m ₁ :a ₁ Mass(kg) m ₂ :a ₂ Mass(kg) a _i :Sheet length (m) a ₂ :Sheet	I = \frac{m_1a_1^2 + m_2a_2^2}{3} Note: 1. horizontal installation. 2. pay attention to the chang time when vertical instal	$\frac{a_1^2 + a_2^2}{3}$ ple of movement llation. $\frac{2a_1^2 + 2a_2^2 + b^2}{6}$ e of movement		
	stick(m) a ₂ :Length of stick(m) m ₁ :a ₁ , Mass(kg) m ₂ :a ₂ Mass(kg) a ₁ :Sheet length (m) a ₂ :Sheet length (m) b: Length of side(m) m ₁ :a ₁ , Mass(kg)	$I = \frac{m_1a_1^2 + m_2a_2^2}{3}$ Note: 1. horizontal installation. 2. pay attention to the chang time when vertical install $I = \frac{m_1(4a_1^2 + b^2) + m_2(4a_2^2 + b^2)}{12}$ Note: 1. horizontal installation. 2. pay attention to the chang	$\frac{a_1^2 + a_2^2}{3}$ ple of movement llation. $\frac{2a_1^2 + 2a_2^2 + b^2}{6}$ e of movement		

	Diagram	Description	Calculation formula of moment of inertia	Rotation radius
d	Rectangle sheet	a:Sheet ength (m) m:Mass (kg)	$I = \frac{ma^2}{12}$	_a ²
е			Note: no special installation direc	tion
	Rectangle sheet	a:Sheet ength (m) m:Mass(kg)	I = \frac{ma^2}{3} Note: 1. horizontal installation. 2. pay attention to the change of time when vertical installation.	$\frac{a^2}{3}$
	Rectangle sheet	a:Sheet length (m) b:Distance between the rotation axis and the gravity center of loading	$I = \frac{ma^2}{12} + mb^2$	$\frac{a^2}{12} + b^2$
		(m) m:Mass(kg)	Note: the cuboids are same too.	
	Concentrated load	a,:Vertical distance between the	$I = m_1 a_1^2 + \frac{m_2 a_2^2}{3} + m_1 K$	
	a ₂	rotation axis and the concentrated loading(m) a ₂ :Length of arm(m) m ₁ :Mass of concentrated loading(kg) m ₂ :Mass of arm(kg)	Note: 1. horizontal installation. 2. compared with m, disregard if r tiny. 3. calculate K according to the sh concentrated loading row by rowhen the loading is spheroid, K	ape of w. For example,
	Number of teeth a Number of teeth b	a:Tooth number of gear b:Tooth number of loading gear	$I_a = (\frac{a}{b})^2 I_b$	

3. Calculation of maximum movement energy $E_{\text{max}}(J)$:

Calculate the maximum movement energy $E_{\rm max}$ according to the formula below, and make sure that the maximum movement energy is within allowed energy range of the chosen pneumatic cylinder, excessive large movement energy would lead to damage of inner parts, please choose rotation cylinder attached with shock absorber when the movement energy is fairly large.

$$E_{\text{max}} = \frac{1}{2} |\omega_{\text{max}}^2| \qquad \qquad \omega_{\text{max}} = \frac{2 \theta}{t} \qquad \qquad \omega_{\text{max}} \text{: Maximal angular velocity (rad/s)}$$

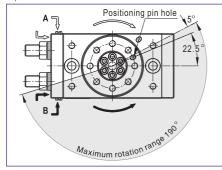
4. Calculation of loading rate

Calculate the loading rate according to the formula below, and the loading rate must not be more than 1.

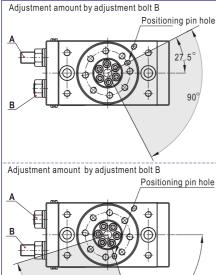
Loading rate= -	W _s Maximal allowed axial loading	- +	W _r Maximal allowed radial loading	+	M Maximal allowed bending moment of working platform	
W _s : Actual	axial loading \	N,: A	Actual radial loading		: Actual loaded bending moment of working platform	

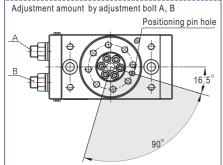
5. Determination method

It could be used only when the chosen pneumatic cylinder must meet the requirements of article 2, 3 and 4 simultaneously.



AITTAC


HRO Series


Installation and application

- 1. Rotation Direction and Rotation Angle
- 1.1) Rotation Direction

- A) By adjusting the adjustment bolt, the rotation end can be set within the range shown in the up drawing: Maximum ratation is 190° ;
- B) The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter–clockwise direction when the B port is pressurized.
- 1.2) Rotation Range Example(90° Rotation)

90°

72.5

1.3) The rotation angle can also be set on a type with internal absorber.

Model	Adjustment angle per rotation of angle (adjustment screw or shock absorber)				
HRQ10	10.2°				
HRQ20	6.5°				
HRQ30	6.5°				
HRQ50	8.2°				

- The range of rotation angle has been adjusted to the maximum in the factory, please do not enlarge the rotation angle any more.
- 3. The movement energy should not exceed the allowed maximum energy, or the inner parts will be damaged.
- 4. The rotary parts need no lubrication.
- 5. Series HRQ is equipped with a rubber bumper or shock absorber. Therefore, perform rotation adjustment in the pressurized condition(minimum operation pressure: 0.1 Mpa or more for adjustment bolt and internal shock absorber types, and 0.2 MPa or more for external shock absorber type.)
- 6. Refer to the table below for tightening torques of the shock absorber setting nut.

Shock absorber size	Max. tightening torque(Nm)
M10	3.5
M14	11.0

- 7. Never loosen the bottom screw of the shock absorber. (It is not an adjustment screw.) That may cause oil leakage.
- Shock absorbers are consumable parts. When a decrease in energy absorption capacity is noticed, it must be replaced.

Rotary table cylinder	Shock absorber
HRQ10	ACA1006-A
HRQ20\HRQ30	ACA1007-A
HRQ50	ACA1412-A

Memo	AITAI
Note	